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The ordering in the assembly of biaxial molecules which interact pairwise via the dispersion force is
investigated statistical-mechanically, where four kinds of liquid crystalline phase and phase transi-
tions between some pairs of those phases are discussed in comparison with the existing theoretical
results from the model of uniaxial molecules. There appear one uniaxial nematic phase, two kinds of
biaxial nematic phase and one discotic phase. The phase diagram of temperature versus interaction
strength are obtained, where the four phases mentioned above appear in different regions depending
on the molecular shape. Some advantages of the present method in investigating the orientational
ordering in biaxial liquid crystals, including the discotic phases, are discussed.

Keywords: biaxial molecules; induced dipole-dipole interaction

§ 1. INTRODUCTION

Some progress has been made in investigating liquid crystalline phases in the
system of biaxial molecules during these two decades. That is, the disco-nematic
phase was discovered in the assembly of discoid molecules by several authors!
and further the biaxial nematic phase which manifests a biaxial symmetry macro-
scopically was discovered by many researchers in the assembly of long biaxial
molecules.” Thus, it is significant to investigate theoretically what kinds of liquid
crystal phase are exhibited by the assembly of biaxial molecules and the proper-
ties of those phases. Shih and Alben discussed first the biaxial nematic phase and
the disco-nematic phase on the basis of a lattice model.3 Straley investigated the
assembly of molecules shaped as rectangular parallelepiped4 for the purpose of
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discussing various phases including the two phases mentioned above. However,
these attempts remain tentative and do not discuss the normal nematic, biaxial
nematic and disco-nematic phases as a whole. In this respect, we attempt here to
discuss such liquid crystal phases as mentioned above as a whole, by taking as a
typical system the assembly of biaxial molecules which interact pairwise via the
dispersion force proposed by one of the present authors previously.5

According to Priest and Lubensky6 we need four order parameters to describe
the ordering in the system of biaxial molecules with long principal axes whose
orientations are defined in terms of the three Eulerian angles. One of these order
parameters is concerned with the orientational ordering of the long axis and the
other three with the biaxial orientational ordering. Although the energy term in
the free energy of this system can be calculated as a function of the four order
parameters without much trouble, the entropy term is rather troublesome. Thus,
the model has been simplified so as to make the calculation tractable. Freiser’
and some others® were confined only to the two order parameters, ignoring two
biaxial order parameters, and Stra]ey4 divided the four order parameters into two
sets of pairs, neglecting the correlation between the sets. On the basis of such
simplified models we cannot understand well the phase transition in the system.
In this respect, the method of Shih and Alben®, who studied the system by
restricting the molecular orientations to six possibilities, is noteworthy. We will
use their model to derive the free energy, including the entropy term in the
present investigation.

The statistical theory on the nematic, cholesteric and smecticA phases based on
some appropriate models of the intermolecular dispersion force was developed
for the system of uniaxial molecules or rod-like molecules with circular section
by Maier and Saupe,” Goossens'® and McMillan!!, respectively, who succeeded
in explaining those phases. For the system of biaxial molecules Freiser’ deter-
mined a certain appropriate form of the effective intermolecular interaction from
the expansion into spherical harmonics based on the biaxial molecular symmetry
and St.raley4 took into account the effect of molecular shape due to the hard core
model. However, the intermolecular interactions proposed by these authors are
not sufficient to clarify various possible phases exhibited by the system of biaxial
molecules and discuss transitions between those phases.

We investigated the liquid crystal of chiral molecules previously by making
use of the advantage of the method of symmetry-breaking potential12 to success-
fully explain the temperature dependence of the cholesteric pitch, where we
assumed a dispersion force to interact between a pair of molecules with hard
cores.!? Although we further intended to inquire into the case of the system of
biaxial molecules interacting pairwise via a similar dispersion force, we did not
succeed in obtaining the free energy as a function of the four relevant order
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parameters.5 Therefore we were unable to discuss the influence of the biaxial ori-
entational ordering on the temperature dependence of the cholesteric pitch and,
of course, could not derive the biaxial liquid crystal phases exhibited in the sys-
tem. Recently, however, we have succeeded in obtaining the free energy in terms
of the four order parameters by using a six-configuration model. That is a gener-
alization of Zwanzig’s three-orientation model'4, where we substitute one of the
biaxial order parameters introduced by Priest and Lubensky with a truncated one
so as to make it tractable and physically reasonable.

In § 2, we derive the effective intermolecular interaction in the assembly of biax-
ial molecules from the induced dipole-dipole interaction in terms of the order vari-
ables and of the relative coordinate of a pair of molecules. In § 3, applying the
method of symmetry-breaking potential'? to this assembly, we obtain the free
energy of the system as a function of the order parameters defined as thermal aver-
ages of the above four order variables. In § 4, on the basis of this free energy we
investigate the biaxial liquid crystal phases which appear and the transitions
between those phases. And, finally, we discuss the influence of the six-direction
model and the substitution of one order variable on the reliability of the result.

§ 2. INTERMOLECULAR POTENTIAL AND ORDER VARIABLES

In order to investigate the intermolecular potential energy, according to Priest
and Lubensky6, we define a tensor

QD) = 0,/ (D () -2 (g =123 ij=2,9,2) (1)
for the molecule /, where api(l) denotes an orthogonal component of the unit vec-
tor a,(/) parallel to the p-th principal axis of the molecule /, and 8pq and 8,~j are
Kronecker’s delta symbols. In Table I we show the interrelation of the directions
of the orthogonal coordinate system (§,1,() in the molecular frame relative to the
orthogonal coordinate system (x,y,z) in the laboratory frame, where the direction
cosines between the two coordinate systems are shown in terms of the Eulerian
angles 0;, g; and y,.

TABLE I Direction cosines between the molecular and laboratory frames

X y b4
3 cosBcosgcosy — singsiny cosOsingcosy + cosgsiny -sinfcosy
n -cos@singcosy — singcosy -cosBsingsiny + cosgcosy sinBsiny
¢ sinfcosg sin@sing cos@

(En,{): coordinate axes on the molecular frame.
(x.3,2): coordinate axes on the laboratory frame.
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Thermal averages of the orthogonal components of the tensor (1) are expressed
as

<Qp"(1) >0=0, (p#4q) (2)

< Qu¥(I) >o= o1(nin] — 6;;/3) + oa(njn} — nini)/2 3)

< Qa2"(I) >o= —(01—03)(nin] —8:;/3)/2+ (04’ —02/2)(nin} —nin]) (4)
(Qa3” (D)o = —(01 +03)(nin] - §;/3)/2 — (04' + 02/2)(nin} — ninj) (5)
in terms of the orthogonal i-component npi of the unit vector n, directing the
average p-th principal axis, of which n{ for the long axis denotes the director.

The order parameters 6}, G ;, 03 and G4 will be obtained as thermal averages of
the order variables defined in terms of the Eulerian angles as

1
61 = gcos2 0 — 5,0”2 = sin? 8; cos 2¢y, 63 = gsin2 #1cos2iyy, (6)

d1' = =(1 + cos® 85) cos(26;) cos(2¢r) (7

.hl'—‘

whose thermal averages
s = (8:(D)o(s = 1,2,3), 04" = (84'(D)o (8)
which will be defined in the next section are the order parameters.
Assuming that the center of mass of each biaxial molecule is distributed at ran-
dom in the whole space of the system in the multipole expansion of the intermo-

lecular potential, we write the induced dipole-dipole interaction potential
between biaxial molecules as

IRELACHEDY Z QLNRLM)
—Us(r1s) nf Z [Q L(DRY(J) + RY(DQY, (J)]
= Us(rry) Z _Z RY(I)RY(J), )
where we have defined. B
RY(I) 2 QI - QD) (10)

and potential functions U;(ry;), Us(ry) and Us(ryy) of the distance ry; between
the pair of molecules. The potential (9) which we have previously introduced to
investigate the influence of the biaxial ordering on the temperature dependence
of the cholesteric pitch is also useful here to discuss orientational orderings in
various phases such as nematic, biaxial nematic and discotic phases. We derive
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(9) from the model of induced dipole-dipole interacion between molecules in the
Appendix.

§ 3. FORMULATION OF THE FREE ENERGY

TABLE II Euler angles and order variables in 6 configurations

Q, 9, &n Pu a1 P 3 G4 G4

Q, 0 0 0 1 0 0 172 172
Q, 0 0 n/2 1 0 0 -12 -1/2
Q3 n/2 0 0 -1/2 1 31 0 1/4
Q4 n/2 0 n/2 -1/2 1 =312 0 -1/4
Qg n/2 /2 0 -1/2 -1 32 0 1/4
Q¢ /2 /2 n/2 -1/2 -1 =32 0 -1/4

In order to investigate the long-range ordering in the system of N biaxial mole-
cules whose orientations are restricted to the six cases as shown in Table II, we
apply the symmetry-breaking potential12 using 7505 as those potentials for the
ordering s=1,2,3 and 4, respectively. Thus we write the partition function in
terms of the order variables 85(I) for the molecule I which will be defined later
in (13) and (14) explicitly as

4 N N
20 =55 I1 [ S o033 e 0-93 3,

Q= I=1 s=1 I=1J=1
(11)

where [ denotes the inverse temperature 1/kgTand ®;; has been defined in (9).
The integration over the spatial coordinates r run in the whole space of the sys-
tem and the summation over the orientation (I) of the molecule I in the six
directions defined in Table 11, where the values taken by the four order variables
are also shown. We have substituted

64(I) = %U}'(I) = i(cos2 8; + cos* 8;) cos(2¢;) cos(2yr) (12)

for &4'(I) which have been defined as (7) for the convenience of calculation.
The order parameter o, is calculated from

10
1 8 k) = b + %
N o, nZ({n:}),(s =1,2,3,4) (13)
where the difinition (8) of the order parameter is replaced with
g, ={(6:(D))o. (5=1,2,3,4) (14)

Js =
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Expanding (11) with respect to the intermolecular potential divided by temper-
ature as

{Th} =
N
N,n [ zexp(zzma,m>( 5 3 i ) 5
Q=0 I=1s=1 I=1 J=1(I<J)
we obtain
S Z({n) = A=Inp+O({n}) - 300a((n}) + -, (16)

where A is an irrelevant constant and p denotes the number density N/V of mole-
cules in terms of the total volume V of the system. We have defined ©  and G,
by

O©0({ns}) = 2e™ cosh (%) +4e? coshn, cosh (3%) , (17)

O2({ns}) = (18)
Qs
{77 H 2V/d"‘r; d®r; E Zexp (Zns{os )40, J)}) P;;

)=, Q(JN)=Q; \s=1

as functions of the symmetry breakers 1),. Substituting (16) into (13) with (17)
and (18) being taken into account, we obtain

S %ﬂ—é%@z({m}) +o (19)

where we have defined T, = dIn® ; / o1 and obtain

= ;' |2¢™ cosh (7’_4) — 2¢~% coshns cosh 3m , (20)
2 2

— 40l s 315
T, =40; e sinh 1 cosh = ) (21)

-1 ___'_721_ . 3773
T3 = 60, e~ % cosh7py sinh -5 ) (22)

= Q@ leMgi e

7'4—906181!1}1(2)‘ (23)
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We rewrite ©, in terms of T.as

1 4 227'3
02({n:}) = -1 7'1 + 2T2 U 3717 + 471y + .

1 T27T3 2 (24)
—Us [gTa +8<T4+Zl—7'1) ]
in terms of the integrals
4w 3
=—p | U(r)d’r. (n=1,2,3) (25)

Substituting (24) into (19), where 1, are rewritten in terms of 1),, we obtain the
order parameters G,as functions of the symmetry-breakers 1;. We solve these
functional relations (19) with respect to the symmetry-breakers in the form
8o
20

s = 00 ({0, }) + £ =—03({0,}), (s = 1,2,3,4) (26)

where the zeroth order or the configuration terms are written as

2. 1+20; 2. cosh(ne(®) cosh(3n3(0/2)
(0) P l 1 = l 3
m ({os}) zin “on + 3 cosh (1 2) , (27)

1. 1-014(3/2)09

(0) = Z1In
772 ({03}) 2 1 _ 0_1 (3/2)02 (28)
1 1-01+40
(0) =21 1 3
mO(e)) = 3 =2, (29)
1+ 207 + 60
(0) = Ip 291 T D94
nO (o)) = A, (30)

for the respective orderings, and the next term due to the intermolecular energy is
obtained by substituting

1 4 2
G:({os}) = -l ( 01’ + =0y ) -U; (50103 + 40004 + 102 03)

2 —0’1

2 1 o305 \°
-Us (—03 +8(0’4+11_01)) (31)

into (26).
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The free energy F as a function of the order parameters is calculated in the unit
of the thermal energy kBT=[3'1 from the formula

o1 o2

F(01,02,03,04) =F0+/nl(x,O,O,O)dm+/n2(01,y,0,0)dy
0 0
o3 o4
+/ns(ol,az,z,O)dz+/174(01,02,03,14)(1“, (32)
0 0

where F( = F(0,0,0,0) represents the disordered phase. Thus we obtain

Flo),00,03,04) =851(01) + S2(01,02) + S3(01,03) + S4(01,04)

2 1 4 020
- g [Ul (5012 + 50‘22) + Us <§0'103 + 40904 + 12_ 0_31)
+Us { 2052 48 (04 + 22278 2 (33)
137 T i1
where we have defined the entropy terms as
1
Si1(o1) = 5[(1 +201)In(1+ 201) + 2(1 — 01) In(1 — 01)], (34)
1 3 3
52(0'1,0‘2) =-3- [(1 -0+ 502) In (1 -0y + 50’2)
3o 3o
+(1—0’1—T2) In (1—0‘1——2—2-)]
2
- g(l—al)ln(l—al), (35)
1
S3(0'1,0'3) =§(1 -0 + 0'3) ln(l -0 + 0’3)
1
+ 5(1 — 01 —o03)In(l — 0y — 03)
- %(1—01)111(1 — o), (36)

1
S4(01,04) =6(1 + 207 + 604) In(1 + 201 + 604)

+ é(l + 201 — 604) In(1 + 20, — 604)

_ %(1 +201) In(1 + 204). (37)
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The equilibrium is determined from the condition

ai F(Ula02703a04) = 7’(01702703a04) =0 (S = 1,27374) (38)

to minimize the free energy (33) with respect to the order parameters o,.

§ 4. RESULTS OF CALCULATION BASED ON A MODEL
FOR THE POLARIZATION OF MOLECULAR DIPOLE

In the first place the relations between the interaction potentials U;,U, and U; in
(9) are investigated by assuming a simple model of the transition dipole moment
of the molecule whose orthogonal components are given by

(n|P,.|0) = p(AET) cos ay, (39)
(n|P1,¢|0) = e,p(AET) sin o cos B, (40)
(n|P,y|0) = £yp(AET) sin a1 sin Ay, (41)

respectively, where the matrix elements of the orthogonal x, y and z components
of the dipole moment operator P; of the molecule I are taken between the ground
state O and an excited state n, and where o; and Bjdenote the polar and azimuth
angles in the molecular frame, respectively. The anisotropy parameters €, and €,
are confined as

0<e, <e, <1, (42)

where they are specified by
e =€y <1, gy<e,=1, e,=¢,=1, (43)

for the rod-like, disc-like and spherical molecules, respectively.

Assuming that the excitation energies of a molecule are not influenced by any
neighbouring molecules and distributed with the energy distribution density
g(AE)), we can rewrite the expressions (A4), (AS), (A6) for the interaction poten-
tials as

4 2
Ui = 5ul2 - (6.2 46,2, (44)
4n? 2 2 2 2
Up = T“[z —(e2" + &%) (2" — €y°), (45)
4 2
Uy = = u(e,? — €,2)?, (46)

9
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y

0.0 0.5 1.0

FIGURE | Diagram of the molecular shape parameters €, and &,. The region defined by eq. (42) in
the main text is shaded and the lines defined by the relation (48) for a equal to 1, 1/7 and 0, respec-
tively, are drawn. The cases where ot =0 or g,= €, = 0 and &, = 0 with &, being finite represent a rod
and a plate, respectively, both with vanishing thickness

defining u as an integral

-1 [p(E)?|p(E")? ’
U= /dE/dE E+ b 9(E)g(E") 47
which is a specific function of the mean distance R between molecules in the sys-
tem. In terms of a parameter o. defined as

£22 — £y2

R )

we can write the ratios of U, and U; to U as

% = a, % =a? (49)
on the basis of (44), (45) and (46). Regarding o as a constant, the relation (48)
gives a curve on the (€,,€,)-plane, as shown in Fig.1. The family of curves with
different values of o covers the plane, where the phases and phase transitions
appearing in the system represented by a point on a certain curve are specified by
the value of « given to that curve. On each curve only the transition temperatures
are different from one point to another. Taking into consideration (49) with the
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aid of (48), we compute for €, ranging from 0 to 1, keeping €, to be zero, in place
of computing for all possible values of o from O to 1. Let us discuss the ordered
phases appearing in the system and phase transitions between those phases by
calculating the free energy (33) as a function of the order parameters. The results
of calculation are described in terms of the reduced temperature and interaction
strengths defined as

kgT

B U=
u

Un

T =,(n=1,2,3) (50)

in the unit u given by (47). The various phases are characterized by four kinds of
order parameters and abbreviated symbolically, as displayed in Table III.

TABLE III Phases characterized by four order parameters with their symbols

Name of the Phase o, G, O3 Gy Symbol
isotropic 0 0 0 0 I
nematic finite 0 0 0 N
molecular biaxial nematic finite 0 finite 0 Nms
phase biaxial nematic finite finite finite finite Npg
disco-nematic finite finite finite finite Dy

The ordering of the normal to molecular plane is assumed to be oriented to the y-axis. Replacing the
y-axis with the z-axis, we can distinguish between Npg and Dy, where 6, and o4vanish with 6, and
63 being finite and negative in Dy in contrast to Npg with all order parameters being finite.

(I) In case €, = 0, there appear only the isotropic phase I and the nematic phase
N. The transition temperature between these phases are estimated
- ksTo  keTo
Tc=———= = 0.365, 51
7 7, (51)
which are higher than the estimate 0.22 by Maier-Saupe as the result of confining
the molecular orientation here.

(ID In case 0 < g, < 1, we have the nematic phase N, two sorts of biaxial
nematic phases and the disco-nematic phase Dyas the ordered phase displayed in
the system. The two biaxial nematic phases were distinguished first by Priest and
Lubensky® who named them the molecular and phase biaxial phases Nyg, Npg,
respectively. We comply with his naming here. In the presentation herein taking
the direction of ordering of the normal to the molecular plane in parallel to the
y-axis, only 0| and o are finite in Nysg, whereas the order parameters oy, 65, 03
and o, are all finite in the phases Npg, and Dy;. In order to distinguish the charac-
ters of Npg, and Dy, it is helpful to adopt the z-axis as the direction of ordering of
the normal to the molecular plane. The expression (33) for the free energy can be
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0.0 O'.5 1.0
€ x

FIGURE 2 Phase diagram on the plane of temperature versus the form factor. The temperature is nor-

malized to T =kgT / U and the form factor €, is changed from 0 to 1 with &, being kept zero

used also for this presentation, where it is found that only 6 ; and o5 are finite
and negative in Dy in contrast with Npg where all order parameters are finite.

(II1) In case €, = 1, only the isotropic phase I and the disco-nematic phase Dy
appear.

The phase diagram on the plane of the anisotropy parameter €, versus tempera-
ture with €, vanishing is shown schematically in Fig.2. The temperature depend-
ence of the order parameters is displayed in Figs.3, 4, 5, 6, 7 and 8. Taking into
consideration the competition between o, denoting the order parameter for the
long molecular axis and o, representing the ordering of the normal to the plate of
the plate-like molecule relative to the direction of the director, we can understand
these figures.

In the case (1) the phase Npg, which is stable at lowest temperatures, loses the
ordering to zero with the rise of temperature and reduces to the isotropic phase.
When €, < 0.705, G, as well as 04 vanish earlier than 6. This is understandable
for the biaxial or plate-like molecule we are concerned with, as follows. Because
the long molecular axis which tends toward the director loses this tendency by
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(o8}

0.5

o]

.

o

0.5 1.0 1.6

FIGURE 3 Temperature dependence of the order parameter o for the case €, =€, = 0 where only the
isotropic and nematic phases appear

rotating around the normal to the molecular plate, when this normal of the mole-
cule with the long molecular axis directed to the director is going to be oriented
randomly around the long molecular axis and accordingly 6, vanishes, the long
molecular axis is going to be distributed randomly around the director and thus
O, tends to vanish.

In this way the transition from Npg to Ny p takes place first with the rising of
temperature. When €, < 0.165, the nematic phase N comes about with a further
rise of temperature. For the case where 0.115 < €, < 0.165 the re-entrant transi-
tion occurs with Nyg reappearing at a higher temperature where long molecular
axes of many molecules lose their tendency toward the director and their molec-
ular plates tend to be more parallel to one another than otherwise.

When g, > 0.705, the long molecular axis is randomly oriented around the
ordering direction of the normal to molecular plate which is taken as the y-axis,
with o 4 still being finite. Thus the phase Dycomes about. As mentioned above,
by taking the direction of ordering of the normal to the molecular plate as the
z-axis, the long molecular axis and the normal of the molecular plate of the mol-
ecule with the long axis directed to the z-axis tend to be randomly oriented
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O

(@]
(®] ' v
T o.5 1.0 T

FIGURE 4 Temperature dependence of the order parameter o for the case €, = 0.1, £,=0, where the

phase Ny,g comes about below the normalized temperature T = 0.39 accompanied by the order
parameter 63 which is too small to make obvious on the diagram. The transition temperature between
the N and Npyg is shown by an arrow. The phase Npg also exists below Nyg at very low temperatures
and the transition temperature cannot be shown in the diagram

around the z-axis. Thus both ¢, and 6 4 vanish with o, as well as o3 being finite
and negative.

5. DISCUSSION

We have investigated phase transitions exhibited in the assembly of long
plate-like molecules interacting pairwise with one another via the intermolecular
coupling @;; given in (9). By adjusting the form parameters of this model, we
can discuss the thermal properties of not only the system of rod-like molecules
but also the system of flat molecules such as discotic liquid crystals simultane-
ously. There exists only the coupling U,for the system of rod-like molecules,
where the long molecular axes tend to be parallel with one another. As the mole-
cule is so shortened as the shape changes from rod to disc and the parameter o
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ex = 0.14

1.0

0.5

@)

° t 1.0 1 1.6 7

FIGURE 5 Temperature dependence of the order parameter 6, and for the case €, =0.14, g,=0,
where the re-entrant transition occurs and 03 is too small to show on the diagram. The two arrows
indicate the temperatures of Ny;g -N and N-Nyp transitions, respectively

increases from zero, the ordering due to the alignment of molecular plates indi-
cated by the order parameter 65 comes about first, where the phase N is trans-
formed into the phase Nyg. Furthermore, as the molecule becomes as flat as the
disc where o approaches 1, the phase Dy appears.

We have restricted the molecular orientations by adopting the six-direction
model, which is regarded to give a little higher estimate of the transition temper-
ature.”We have further used a substitute &4 defined as (12) for 64’ in the last
expression in (8), by which the result is somewhat influenced quantitatively but
unchanged qualitatively to describe the orientation of the molecular plate relative
to the long axis oriented toward the director. Moreover, we have used 64 as a
substitute of &4" which is rather more helpful than &, to grasp the relation of
the phase transition with the molecular shape.

It is also worthwhile to investigate the system of rigid-body molecules in order
to explain the dependence of the phase transition on the molecular shape. Shih
and Alben’ investigated the phase transition in the system of biaxial liquid crys-
tal on the basis of the rigid-body model of the molecules arranged on a lattice.
They did not introduce the four order parameters and their result is unsatisfac-
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0.0 0.5 1.0 ¥

FIGURE 6 Temperature dependence of the order parameters for the case &,= 0.6, €, = 0. There exists
the phase Npgat temperatures below 0.27, where 6, and 03 are too small to show on the diagram

tory. The present method can be applied to the rigid molecule model by introduc-
ing four order parameters. In consequence the free energy of the form (33) is
obtained, where the molecular density substitutes the temperature and the cou-
pling parameters U, are replaced with the shape-dependent parameters, say 1,
constituted of f-functions which were defined in Mayer’s statistical-mechanical
theory of condensation.

We hope further to apply the method to liquid crystals accompanied with
ferroelectn'city15 and a.ntiferroelectn'cityl6 where the biaxial ordering will play a
significant role to clarify phase transitions in those systems.

APPENDIX

The expression (9) for the effective interaction potential is derived from the
potential energy

1 (01, 05]ar3|n1, ny)(ng, ny|aiy|01, 05)
Oy = — , (A1)
Y RIJ6 Z (Enl,n.l - EOIyOJ)

nr,ng
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FIGURE 7 Temperature dependence of the order parameters in the case g,= 0.8, £, = 0. The phases

Npg and Dy are exhibited at temperatures 7' < 0.25 and T > 0.25, where the direction of
alignment of the normal to the molecular plane is taken as the y- and the z-axes, respectively, to define
the order parameters

due to the dispersion force between induced dipoles of the electrically neutral
molecules I and J which possess the biaxial symmetry around the principal axis
of molecule, where R;; denotes the distance between the molecules / and J,
E,, n, isthe energy of the pair of molecular 7 and J when they are in the excited
states n; and nj, respectively, and Fo, 0, is the energy of the pair whose compo-
nent molecules are both in the ground state denoted as 0; and 0y. The quantity a;;
is defined as

ay =Y _[3(pri - ura)(pa,i - ury) — pri - pagleries s, (A2)

i
where p;; and u; ; denote the vector extending from the centre of gravity of the
molecule / to the i-th electric charge in that molecule and the unit vector between
the molecules I and J, respectively, and e;;, e; ; are the i-th electric charge in the
molecule Jand the j-th electric charge in the molecule J, respectively. The sum-
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mation with ij is carried out over the electric charges in the molecules 7 and J,
respectively.

ex=1.0
0.5 1.0 1.5 F
o 2 e
(@]
g1
(@]
-
| O3
FIGURE 8 Temperature dependence of the order parameters in the case €,= 1.0, €, = 0, where only

the isotropic phase and the phase Dy appear. To define the order parameter for the phase Dythe direc-
tion of alignment of the normal to the molecular plane is taken as the z-axis

We can readily rewrite (A1) as

1
R Z[ala -as? - 3(ar* - usg)(as® - up )
aYﬁ

®ry=-

|2

>3 [€011p1,a|m1) {04 |ps,5Im)I? (A3)

(EmmJ - EOI,OJ) ’

where the first summation is taken over all principal axes of the pair of molecules
concerned, a;* denotes the unit vector along the principal axes forming the
molecular orthogonal coordinate axes (o, = x,),z). The matrix elements of the
operators p;p and pyq for orthogonal components of dipole moments of the
molecular pair between the ground state 0 and any excited state » are involved in
the second summation. Assuming that the relative distribution of the centres of
mass of the molecular pair is invariant by changing signs of any orthogonal com-
ponents, we can obtain the expression (9) in the main text, where we have
defined

np,ny

1 9

= 3
SRy nimny Em,n; - EOI,OJ

U,

DO],nlDOJ,nJa (A4)
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1 3
Us; = Do, n,Po,ny, A5
: SRIJG nr,ngy Entiny — EOIaOJ Ormrt 0y ( )

1 1
U; = Py, n.Po, n A6
3 5R;;° = En, n, — Eo, 0, 0rnf0s,my (A6)

in terms of
1 2 1 2 1 2
Do m; = 3 [{0s|p1,z|nr}|” — §|(01|P1,z|n1>| - §|(01|p1,y|n1)| , (A7)
1

Pony = §(|(01|p1,m|n1)|2 = Or|prylnn)?) (A8)

for the molecule 7 and similarly for the molecule J.
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