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The ordering in the assembly of biaxial molecules which interact pairwise via the dispersion force is 
investigated statistical-mechanically, where four kinds of liquid crystalline phase and phase transi- 
tions between some pairs of those phases are discussed in comparison with the existing theoretical 
results from the model of uniaxial molecules. There appear one uniaxial nematic phase, two kinds of 
biaxial nematic phase and one discotic phase. The phase diagram of temperature versus interaction 
strength are obtained, where the four phases mentioned above appear in different regions depending 
on the molecular shape. Some advantages of the present method in investigating the orientational 
ordering in biaxial liquid crystals, including the discotic phases, are discussed. 

Kevwords: biaxial molecules; induced dipole-dipole interaction 

Q 1. INTRODUCTION 

Some progress has been made in investigating liquid crystalline phases in the 
system of biaxial molecules during these two decades. That is, the disco-nematic 
phase was discovered in the assembly of discoid molecules by several authors 
and further the biaxial nematic phase which manifests a biaxial symmetry macro- 
scopically was discovered by many researchers in the assembly of long biaxial 
molecules.* Thus, it is significant to investigate theoretically what kinds of liquid 
crystal phase are exhibited by the assembly of biaxial molecules and the proper- 
ties of those phases. Shih and Alben discussed first the biaxial nematic phase and 
the disco-nematic phase on the basis of a lattice model.3 Straley investigated the 
assembly of molecules shaped as rectangular parallelepiped4 for the purpose of 

* Correspondence Author. 
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208 MASAHITO HOSINO and HUZIO NAKANO 

discussing various phases including the two phases mentioned above. However, 
these attempts remain tentative and do not discuss the normal nematic, biaxial 
nematic and disco-nematic phases as a whole. In this respect, we attempt here to 
discuss such liquid crystal phases as mentioned above as a whole, by taking as a 
typical system the assembly of biaxial molecules which interact pairwise via the 
dispersion force proposed by one of the present authors previo~sly.~ 

According to Priest and Lubensky6 we need four order parameters to describe 
the ordering in the system of biaxial molecules with long principal axes whose 
orientations are defined in terms of the three Eulerian angles. One of these order 
parameters is concerned with the orientational ordering of the long axis and the 
other three with the biaxial orientational ordering. Although the energy term in 
the free energy of this system can be calculated as a function of the four order 
parameters without much trouble, the entropy term is rather troublesome. Thus, 
the model has been simplified so as to make the calculation tractable. Freiser' 
and some others' were confined only to the two order parameters, ignoring two 
biaxial order parameters, and Straley4 divided the four order parameters into two 
sets of pairs, neglecting the correlation between the sets. On the basis of such 
simplified models we cannot understand well the phase transition in the system. 
In this respect, the method of Shih and Alben3, who studied the system by 
restricting the molecular orientations to six possibilities, is noteworthy. We will 
use their model to derive the free energy, including the entropy term in the 
present investigation. 

The statistical theory on the nematic, cholesteric and smecticA phases based on 
some appropriate models of the intermolecular dispersion force was developed 
for the system of uniaxial molecules or rod-like molecules with circular section 
by Maier and Saupe? Goassens" and McMillan", respectively, who succeeded 
in explaining those phases. For the system of biaxial molecules Freiser7 deter- 
mined a certain appropriate form of the effective intermolecular interaction from 
the expansion into spherical harmonics based on the biaxial molecular symmetry 
and Straley4 took into account the effect of molecular shape due to the hard core 
model. However, the intermolecular interactions proposed by these authors are 
not sufficient to clarify various possible phases exhibited by the system of biaxial 
molecules and discuss transitions between those phases. 

We investigated the liquid crystal of chiral molecules previously by making 
use of the advantage of the method of symmetry-breaking potential12 to success- 
fully explain the temperature dependence of the cholesteric pitch, where we 
assumed a dispersion force to interact between a pair of molecules with hard 
~ 0 r e s . l ~  Although we further intended to inquire into the case of the system of 
biaxial molecules interacting pairwise via a similar dispersion force, we did not 
succeed in obtaining the free energy as a function of the four relevant order 
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PHASE TRANSITIONS IN BIAXIAL MOLECULES 209 

 parameter^.^ Therefore we were unable to discuss the influence of the biaxial ori- 
entational ordering on the temperature dependence of the cholesteric pitch and, 
of course, could not derive the biaxial liquid crystal phases exhibited in the sys- 
tem. Recently, however, we have succeeded in obtaining the free energy in terms 
of the four order parameters by using a six-configuration model. That is a gener- 
alization of Zwanzig’s three-orientation model 14, where we substitute one of the 
biaxial order parameters introduced by Priest and Lubensky with a truncated one 
so as to make it tractable and physically reasonable. 

In $2 ,  we derive the effective intermolecular interaction in the assembly of biax- 
ial molecules from the induced dipole-dipole interaction in terms of the order vari- 
ables and of the relative coordinate of a pair of molecules. In $ 3, applying the 
method of symmetry-breaking potential’* to this assembly, we obtain the free 
energy of the system as a function of the order parameters defined as thermal aver- 
ages of the above four order variables. In $ 4, on the basis of this free energy we 
investigate the biaxial liquid crystal phases which appear and the transitions 
between those phases. And, finally, we discuss the influence of the six-direction 
model and the substitution of one order variable on the reliability of the result. 

Q 2. INTERMOLECULAR POTENTIAL AND ORDER VARIABLES 

In order to investigate the intermolecular potential energy, according to Priest 
and Lubensky6, we define a tensor 

for the molecule I, where a j ( I )  denotes an orthogonal component of the unit vec- 
tor aJl) parallel to the p-th principal axis of the molecule I ,  and ljPp4 and 6, are 
Kronecker’s delta symbols. In Table I we show the interrelation of the directions 
of the orthogonal coordinate system (c,q,c) in the molecular frame relative to the 
orthogonal coordinate system (x,y,z) in the laboratory frame, where the direction 
cosines between the two coordinate systems are shown in terms of the Eulerian 
angles € I I ,  @ I  and v,. 

TABLE I Direction cosines between the molecular and laboratory frames 

X Y 2 

5 cos~cosgcosy - singsiny cosesingcosy + cosgsiny -sinecosy 
q -cosOsin@cosy - singcosy -cos8singsiny + cosgcosy sinesiny 

(Zq.6): coordinate axes on the molecular frame. 
(x,Y,L): coordinate axes on the laboratory frame. 

sinecos) sinesing case 
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210 MASAHITO HOSINO and HUZIO NAKANO 

Thermal averages of the orthogonal components of the tensor (1) are expressed 
as 

< Qpgi’(Q >o= 0, (P # 4) (2) 

(3) < Q1li’(I) >o= g,(nini - &j/3) + 02(71:ni - nini) /2  

< Q22ij(I) >o= - (DI  -c~3)(12112{  -sij/3)/2+((~q’-g.2/2)(0:7232-nn5ni) (4) 

( Q 3 3 i ’ ( I ) ) o  = - (01 + 03)(712;n’; - Sij/3)/2 - ( ( ~ 4 ‘  + 02/2)(4n5 - ni71;) ( 5 )  

in terms of the orthogonal i-component n i  of the unit vector np directing the 
average p-th principal axis, of which n1 for the long axis denotes the director. 
The order parameters ol, 0 2. 0 3  and 0 4 ~  will be obtained as thermal averages of 
the order variables defined in terms of the Eulerian angles as 

3 1 3 
2 2 2 61 = - cos2 01 - - ,I& = sin2 01 cos 241, e3 = - sin2 O1 cos 2$1, (6) 

( 7) 

0 8  = (eS(I))o(s = 1,2,3) ,  ~ 4 ’  = (e4’(1))0 (8) 

1 
4 

a4‘ = ;(I + C O S ~  e l )  ~ o s ( 2 4 ~ )  C O S ( ~ $ ~ )  

whose thermal averages 

which will be defined in the next section are the order parameters. 
Assuming that the center of mass of each biaxial molecule is distributed at ran- 

dom in the whole space of the system in the multipole expansion of the intermo- 
lecular potential, we write the induced dipole-dipole interaction potential 
between biaxial molecules as 

i = z , y , r  j=x,y,z  

- U ~ ( T ~ J )  C C [Qyl(I)Ri’(J) + Bij(I)Q?l(J)] 
i=x,y,r j=x,y,z  

- U 3 ( T I J )  c C R”(I)Ri’(J), (9) 
i=z,y,z  j=x,y,z  

where we have defined. 

R i j ( I )  QF2(I) - Q$!;(I) (10) 

and potential functions Ul(rIJ),  U2(rIJ) and 1?!3(r,J) of the distance rIJ between 
the pair of molecules. The potential (9) which we have previously introduced to 
investigate the influence of the biaxial ordering on the temperature dependence 
of the cholesteric pitch is also useful here to discuss orientational orderings in 
various phases such as nematic, biaxial nematic and discotic phases. We derive 
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PHASE TRANSITIONS IN BIAXIAL MOLECULES 21 1 

(9) from the model of induced dipole-dipole interacion between molecules in the 
Appendix. 

Q 3. FORMULATION OF THE FREE ENERGY 

TABLE I1 Euler angles and order variables in 6 configurations 

Qn en @n @n 81 8 2  8 3  5 4  8; 

Q l  0 0 0 1 0 0 1 12 112 

Q2 0 0 n12 1 0 0 -112 -112 

Q3 n12 0 0 -112 1 312 0 I I 4  

Q4 rr12 0 n12 -112 I -312 0 -114 

Q5 n12 rd2 0 -112 - I  312 0 1 I 4  

Q6 n12 rd2 rd2 -112 -1  -312 0 -114 

In order to investigate the long-range ordering in the system of N biaxial mole- 
cules whose orientations are restricted to the six cases as shown in Table 11, we 
apply the symmetry-breaking potential12 using as those potentials for the 
ordering s=1,2,3 and 4, respectively. Thus we write the partition function in 
terms of the order variables sS(1) for the molecule I which will be defined later 
in (1 3) and ( 14) explicitly as 

r~ 4 N N  1 

(11) 
where p denotes the inverse temperature llkBTand OIJ has been defined in (9). 
The integration over the spatial coordinates r run in the whole space of the sys- 
tem and the summation over the orientation Q(r) of the molecule I in the six 
directions defined in Table 11, where the values taken by the four order variables 
are also shown. We have substituted 

26(1) + 1 1 
&471) = - ( C O S ~  eI + C O S ~  e,) C O S ( ~ ~ [ )  cos(2+I) 

4 6 4 ( 1 )  = 

for & 4 ’ ( 1 )  which have been defined as (7) for the convenience of calculation. 
The order parameter 0, is calculated from 

where the difinition (8) of the order parameter is replaced with 

(14) us = (es(I))0. (S = 1,2,3,4)  
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212 MASAHITO HOSINO and HUZlO NAKANO 

Expanding (1 1) with respect to the intermolecular potential divided by temper- 
ature as 

we obtain 

where A is an irrelevant constant and p denotes the number density N N  of mole- 
cules in terms of the total volume V of the system. We have defined 0 0 and 0 2  

by 

as functions of the symmetry breakers q,. Substituting (16) into (13) with (17) 
and (1 8) being taken into account, we obtain 

(19) 
1 8  
2 877s 

o , = r s - - ~ - 0 2 ( { ~ s } ) + . . . ,  

where we have defined z, = aln0 / h, and obtain 

74 = @oleq1 sinh ($) . (23) 
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PHASE TRANSITIONS IN BIAXIAL MOLECULES 213 

We rewrite O2 in terms of z,as 

in terms of the integrals 

u, = --p 47r 3 /U,,(r)d3r. (n = 1'2'3) (25) 

Substituting (24) into (19), where z, are rewritten in terms of q,, we obtain the 
order parameters o,as functions of the symmetry-breakers q,. We solve these 
functional relations (19) with respect to the symmetry-breakers in the form 

(26) 
P a  
2 808 V8 =V~(O)((O~)) + ---@2({u8}),(s = 1,2,3,4)  

where the zeroth order or the configuration terms are written as 

for the respective orderings, and the next term due to the intermolecular energy is 
obtained by substituting 

into (26). 
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214 MASAHITO HOSINO and HUZlO NAKANO 

1 
6 

+ -(1+ 201 - 604) In(1 + 201 - 604) 

&(01,04) =-(1 + 201 + 604) In(1 + 201 + 604) 
1 
6 

(37) 1 
3 

- - ( I +  201)ln( l+ 201). 
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PHASE TRANSITIONS IN BIAXIAL MOLECULES 215 

The equilibrium is determined from the condition 

to minimize the free energy (33) with respect to the order parameters 0,. 

5 4. RESULTS OF CALCULATION BASED ON A MODEL 
FOR THE POLARIZATION OF MOLECULAR DIPOLE 

In the first place the relations between the interaction potentials U,,U2 and U,  in 
(9) are investigated by assuming a simple model of the transition dipole moment 
of the molecule whose orthogonal components are given by 

(nIR,.lo) = p(AE?)  C O S ~ I ,  (39) 

(40) (nlS,,lO) = w ( A E ; )  sin01 COSPI, 

(nlPI,,lO) = E ~ P ( A E ; )  sinaI s i n h ,  (41) 
respectively, where the matrix elements of the orthogonal x, y and z components 
of the dipole moment operator PI of the molecule I are taken between the ground 
state 0 and an excited state n, and where a1 and Ppenote the polar and azimuth 
angles in the molecular frame, respectively. The anisotropy parameters E, and E~ 

are confined as 

0 I Ey I E z  5 1, 

E, = E y  < 1, E y  < E, = 1, E, = E y  = 1, 

(42) 

(43) 

where they are specified by 

for the rod-like, disc-like and spherical molecules, respectively. 
Assuming that the excitation energies of a molecule are not influenced by any 

neighbouring molecules and distributed with the energy distribution density 
g(AEI) ,  we can rewrite the expressions (A4), (A5), (A6) for the interaction poten- 
tials as 

4n2 
UI = - 4 2  9 - (&,2 + EY2)]2,  

4n2 2 = - 4 2  9 - (EZ2 + &3](&, - Ey2),  

(44) 

(45) 

4n2 
u2 = -U(E, 9 - & y 2 ) 2 ,  
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216 MASAHITO HOSINO and HUZIO NAKANO 

I 

E x  

0.0 0.5 1 . 0  
FIGURE 1 Diagram of the molecular shape parameters E~ and E~ The region defined by eq. (42) in 
the main text is shaded and the lines defined by the relation (48) for a equal to 1, 117 and 0, respec- 
tively, are drawn. The cases where a = 0 or EP E = 0 and E,, = 0 with E~ being finite represent a rod 
and a plate, respectively, both with vanishing thicLess 

defining u as an integral 

which is a specific function of the mean distance R between molecules in the sys- 
tem. In terms of a parameter a defined as 

we can write the ratios of U, and U, to U ,  as 

on the basis of (44), (45) and (46). Regarding a as a constant, the relation (48) 
gives a curve on the (Ex,Ey)-plane, as shown in Fig.1. The family of curves with 
different values of a covers the plane, where the phases and phase transitions 
appearing in the system represented by a point on a certain curve are specified by 
the value of a given to that curve. On each curve only the transition temperatures 
are different from one point to another. Taking into consideration (49) with the 
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PHASE TRANSITIONS IN BIAXIAL MOLECULES 217 

aid of (48), we compute for E, ranging from 0 to 1, keeping E~ to be zero, in place 
of computing for all possible values of a from 0 to 1. Let us discuss the ordered 
phases appearing in the system and phase transitions between those phases by 
calculating the free energy (33) as a function of the order parameters. The results 
of calculation are described in terms of the reduced temperature and interaction 
strengths defined as 

- u n  - 
T g, Un = - ,(n = 1,2,3)  

U U 

in the unit u given by (47). The various phases are characterized by four kinds of 
order parameters and abbreviated symbolically, as displayed in Table 111. 

TABLE I11 Phases characterized by four order parameters with their symbols 

Name of ihe Phase =I =2 0 3  04 Symbol 

isotropic 

nematic 

0 0 0 0 I 

finite 0 0 0 N 

molecular biaxial nematic finite 0 finite 0 NMB 

disco-nematic finite finite finite finite DN 
phase biaxial nematic finite finite finite finite NPB 

The ordering of the normal to molecular plane is assumed to be oriented to the y-axis. Replacing the 
y-axis with the z-axis, we can distinguish between NPB and DN, where 02 and o4vanish with 6, and 
o3 being finite and negative in D, in contrast to Npa with all order parameters being finite. 

(I) In case E, = 0, there appear only the isotropic phase I and the nematic phase 
N. The transition temperature between these phases are estimated 

which are higher than the estimate 0.22 by Maier-Saupe as the result of confining 
the molecular orientation here. 

(11) In case 0 < E, < 1, we have the nematic phase N, two sorts of biaxial 
nematic phases and the disco-nematic phase DNas the ordered phase displayed in 
the system. The two biaxial nematic phases were distinguished first by Priest and 
Lubensky6 who named them the molecular and phase biaxial phases NMB, Npg, 
respectively. We comply with his naming here. In the presentation herein taking 
the direction of ordering of the normal to the molecular plane in parallel to the 
y-axis, only o1 and (33 are finite in NMB, whereas the order parameters oI, 02, o3 
and (3, are all finite in the phases NpB,  and D N .  In order to distinguish the charac- 
ters of NpB, and DN, it is helpful to adopt the z-axis as the direction of ordering of 
the normal to the molecular plane. The expression (33) for the free energy can be 
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218 MASAHITO HOSINO and HUZlO NAKANO 

0.0 0 . 5  1 .o 
& x  

FIGURE 2 Phase diagram on the plane of temperature versus the form factor. The temperature is nor- 

malized to = kgT/u and the form factor E~ is changed from 0 to 1 with E, being kept zero 

used also for this presentation, where it is found that only o and o3 are finite 
and negative in DN in contrast with NpB where all order parameters are finite. 

(111) In case E, = 1, only the isotropic phase I and the disco-nematic phase DN 
appear. 

The phase diagram on the plane of the anisotropy parameter E, versus tempera- 
ture with E~ vanishing is shown schematically in Fig.2. The temperature depend- 
ence of the order parameters is displayed in Figs.3,4,5,6,7 and 8. Taking into 
consideration the competition between o1 denoting the order parameter for the 
long molecular axis and o4 representing the ordering of the normal to the plate of 
the plate-like molecule relative to the direction of the director, we can understand 
these figures. 

In the case (11) the phase NpB, which is stable at lowest temperatures, loses the 
ordering to zero with the rise of temperature and reduces to the isotropic phase. 
When E, < 0.705, o2 as well as o4 vanish earlier than ol. This is understandable 
for the biaxial or plate-like molecule we are concerned with, as follows. Because 
the long molecular axis which tends toward the director loses this tendency by 
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PHASE TRANSITIONS IN BIAXIAL MOLECULES 219 

0 
r 

Lo 
0 

0 
0 

E x  = 0.0 

0.5 1.0 1 . 5  

FIGURE 3 Temperature dependence of the order parameter 0 ,  for the case E~ = q = 0 where only the 
isotropic and nematic phases appear 

rotating around the normal to the molecular plate, when this normal of the mole- 
cule with the long molecular axis directed to the director is going to be oriented 
randomly around the long molecular axis and accordingly 0, vanishes, the long 
molecular axis is going to be distributed randomly around the director and thus 
o2 tends to vanish. 

In this way the transition from N p g  to NMB takes place first with the rising of 
temperature. When E, < 0.165, the nematic phase N comes about with a further 
rise of temperature. For the case where 0.1 15 < E, < 0.165 the re-entrant transi- 
tion occurs with NMB reappearing at a higher temperature where long molecular 
axes of many molecules lose their tendency toward the director and their molec- 
ular plates tend to be more parallel to one another than otherwise. 

When E, > 0.705, the long molecular axis is randomly oriented around the 
ordering direction of the normal to molecular plate which is taken as the y-axis, 
with 0 still being finite. Thus the phase DNcomes about. As mentioned above, 
by taking the direction of ordering of the normal to the molecular plate as the 
z-axis, the long molecular axis and the normal of the molecular plate of the mol- 
ecule with the long axis directed to the z-axis tend to be randomly oriented 
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220 MASAHITO HOSINO and HUZIO NAKANO 

& x  = 0.1 
0 
t- 

10 

0 

0 
0 

10.5 1 . 0. T 
FIGURE 4 Temperature dependence of the order parameter 6, for the case E~ = 0.1, E~ = 0, where the 

phase NMB comes about below the normalized temperature T = 0.39 accompanied by the order 
parameter 63 which is too small to make obvious on the diagram. The transition temperature between 
the N and NMB is shown by an arrow. The phase NPB also exists below NMB at very low temperatures 
and the transition temperature cannot be shown in the diagram 

- 

around the z-axis. Thus both o2 and o vanish with cfl as well as cf3 being finite 
and negative. 

5. DISCUSSION 

We have investigated phase transitions exhibited in the assembly of long 
plate-like molecules interacting pairwise with one another via the intermolecular 
coupling QIJ given in (9). By adjusting the form parameters of this model, we 
can discuss the thermal properties of not only the system of rod-like molecules 
but also the system of flat molecules such as discotic liquid crystals simultane- 
ously. There exists only the coupling Ulfor the system of rod-like molecules, 
where the long molecular axes tend to be parallel with one another. As the mole- 
cule is so shortened as the shape changes from rod to disc and the parameter 01 
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0 
T 

v) 

0 

0 
0 

0.14  

t 1 .0  
- 
1.5 7 

FIGURE 5 Temperature dependence of the order parameter GI and for the case E~ = 0.14, E, = 0, 
where the re-entrant transition occurs and o3 is too small to show on the diagram. The two akows 
indicate the temperatures of N M ~  -N and N-N,, transitions, respectively 

increases from zero, the ordering due to the alignment of molecular plates indi- 
cated by the order parameter o3 comes about first, where the phase N is trans- 
formed into the phase NMB. Furthermore, as the molecule becomes as flat as the 
disc where a approaches I ,  the phase DN appears. 

We have restricted the molecular orientations by adopting the six-direction 
model, which is regarded to give a little higher estimate of the transition temper- 
a t ~ r e . ~ W e  have further used a substitute 6 4  defined as (12) for 6 4 '  in the last 
expression in (8), by which the result is somewhat influenced quantitatively but 
unchanged qualitatively to describe the orientation of the molecular plate relative 
to the long axis oriented toward the director. Moreover, we have used 6 4  as a 
substitute of e4' which is rather more helpful than 6 4 '  to grasp the relation of 
the phase transition with the molecular shape. 

It is also worthwhile to investigate the system of rigid-body molecules in order 
to explain the dependence of the phase transition on the molecular shape. Shih 
and Alben3 investigated the phase transition in the system of biaxial liquid crys- 
tal on the basis of the rigid-body model of the molecules arranged on a lattice. 
They did not introduce the four order parameters and their result is unsatisfac- 
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e x  = 0.6 

0.0 0 . 5  1.0 

FIGURE 6 Temperature dependence of the order parameters for the case EF 0.6, 
the phase NpBat temperatures below 0.27, where o2 and 03 are too small to show on the diagram 

= 0. There exists 

tory. The present method can be applied to the rigid molecule model by introduc- 
ing four order parameters. In consequence the free energy of the form (33) is 
obtained, where the molecular density substitutes the temperature and the cou- 
pling parameters Un are replaced with the shape-dependent parameters, say I,, 
constituted of f-functions which were defined in Mayer's statistical-mechanical 
theory of condensation. 

We hope further to apply the method to liquid crystals accompanied with 
ferroelectricity l 5  and antiferroelectricity'6 where the biaxial ordering will play a 
significant role to clarify phase transitions in those systems. 

APPENDIX 

The expression (9) for the effective interaction potential is derived from the 
potential energy 
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e x  = 0.8 
0 
T 

0 
0 

0 
7 

I 

FIGURE 7 Temperature dependence of the order parameters in the case E,= 0.8, E~ = 0. The phases 

Np, and DN are exhibited at temperatures 2 0.25, where the direction of 
alignment of the normal to the molecular plane is taken as they- and the z-axes, respectively, to define 
the order parameters 

5 0.25 and 

due to the dispersion force between induced dipoles of the electrically neutral 
molecules I and J which possess the biaxial symmetry around the principal axis 
of molecule, where RIj denotes the distance between the molecules I and J ,  
En, ,n is the energy of the pair of molecular I and J when they are in the excited 
states nl and nJ, respectively, and Eo, ,O is the energy of the pair whose compo- 
nent molecules are both in the ground state denoted as 01 and 0,. The quantity ulJ 
is defined as 

aIJ = c [ 3 ( P l , j  ' u I , J ) ( P J , i  ' u 1 , J )  - PI , ;  * P J , j ] e l , i e J , j r  (-42) 
i , j  

where pl,i and denote the vector extending from the centre of gravity of the 
molecule I to the i-th electric charge in that molecule and the unit vector between 
the molecules I and J ,  respectively, and el,i, eJ,j are the i-th electric charge in the 
molecule land the j-th electric charge in the molecule J, respectively. The sum- 
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mation with i,j is carried out over the electric charges in the molecules I and J ,  
respectively. 

MASAHITO HOSINO and HUZIO NAKANO 

& x  = 1.0 
0.5 1 .o  1 . 5  7 

0. 
0 

0 1  

0 
T 

I 

FIGURE 8 Temperature dependence of the order parameters in the case E,= 1 .O, 0, where only 
the isotropic phase and the phase DN appear. To define the order parameter for the 2:e DNthe direc- 
tion of alignment of the normal to the molecular plane is taken as the z-axis 

We can readily rewrite (Al) as 

where the first summation i s  taken over all principal axes of the pair of molecules 
concerned, aIa denotes the unit vector along the principal axes forming the 
molecular orthogonal coordinate axes (ct,p = x,y,z). The matrix elements of the 
operators pJ,p and P J , ~  for orthogonal components of dipole moments of the 
molecular pair between the ground state 0 and any excited state n are involved in 
the second summation. Assuming that the relative distribution of the centres of 
mass of the molecular pair is invariant by changing signs of any orthogonal com- 
ponents, we can obtain the expression (9) in the main text, where we have 
defined 
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in terms of 

n 

for the molecule I and similarly for the molecule J .  
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